April 16

Hw: $x^{p-1}+x^{p-2}+\cdots+x+1$ iseed.
(1) $=\frac{x^{p}-1}{x-1}$
(2) trankte $x \mapsto x+1$
(B) $p \left\lvert\,\binom{ P_{i}}{i} \quad i=1\right., \ldots, p-1$

$$
\frac{p!}{i!(p i)!}
$$

Plan

- recap
- adgebrair field ext.
- tower of ficll ext.

Defn Given field ext KCL we say $\alpha \in L$ algebraic over K if $J \frac{x}{p}(x) \in K(x)$ sit. $\left.p l a\right)=0$

- Say $\alpha \in L$ is tronsle dental it
α not argebar. Ex: $\pi \in \mathbb{C}$ not alg \mathcal{Q}
Detn If $\alpha \in L$ algebraic over k, then the minimal polywonid of α over K is a mapilynomal $p(x) \in K[x]$ suck that
(a) $p(a)=0$
(6) if $g(x) \in k[x] \omega d g(2)=0$ then pig.
Prop: The min poly $p(x)$ of α exist! Moreover, it y irreducible \& $\log p(k)=[k(\alpha): k]$.

sketch a other proust
- Let $n=[k: F] \Rightarrow \exists$ basis x_{y}, x_{n} of F over K
- Let $m=C L: k J \Rightarrow$ J hears hots of Love K
strategy; find bass of sire niM of L over F
Goes: basis is $\left\{x_{i} y_{j}\right\} \begin{aligned} & i=1, \cdots \\ & j=1, \cdots, m\end{aligned}$
Guns is correct!
Need (FckCLT
- $\left\{x_{i} y_{j}\right\}$ spanning set
- $\left\{x_{i j} y_{j}\right\}$ lan instep.

Let $\alpha \in L$.

- know $\alpha=a_{l} y_{1}+\cdots+a_{m} y_{m}$

$$
a_{i}+K
$$

Write $a_{i}=b_{i 1} x_{1} t \cdots+b_{i n} x_{n}$ n expand!

$$
\begin{aligned}
\Rightarrow \alpha= & \left(b_{11} x_{1}+\cdots+b_{i n} x_{n}\right) y_{1} t \cdots \\
& \left(b_{m 1} x_{1}+\cdots b_{m n} x_{n}\right) y_{m} \\
= & \sum b_{j i} x_{i} \psi_{j}
\end{aligned}
$$

Shows spanning.

Detn. Say $K C L$ algebaic fexl ext if ever $\alpha \in L$ is alg, over K.

- Say KCL fint if |L-K| frite
- Say kcl tras if not algedaic
Ex: $Q_{\text {aly }} \bar{Q} \subset \mathbb{C}$
Lemns: $K<L$ frite $\Rightarrow K<l$ alphaic
PF:- Know L has a finiz bass over k.
- Neel to show: $\forall a \in L, ~ \exists$ poly $0 \nexists f(x) \in K[x]$ sit $f(\alpha)=0$

Commats
(1) $Q \subset Q(\sqrt{2}, \sqrt{3})$ frite
$\sqrt{2}+\sqrt{3} \in Q(\sqrt{3}, \sqrt{2})$ is algoraic. but vely?
(2) Special case

$$
\begin{aligned}
& k c L=k(2) \\
& (L=k[x] /(f))
\end{aligned}
$$

Take powers!
Consiler $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right.$,

$$
c L
$$

Since $[L, K]=d$ firite know $\frac{\left\{1, \alpha, \ldots, \alpha^{d}\right\}}{d t 1 \text { elenests }}$ lin. depelat $\Rightarrow \exists a_{0},-a_{2} \in K$ nst allzoo suck that $a_{d} \alpha^{d}+\cdots+a_{0}=0$
\Rightarrow Detre $\begin{aligned} & f(x)=a_{d} x^{d}+\cdots \operatorname{coth}(x) \\ & \neq 0\end{aligned}$ $f(\alpha)=0$

